هدف ما در این پایان نامه، ساخت و تجزیه و تحلیل روش های عددی با مرتبه دقت بالا برای حل مسایل مقدار اولیه ی معادلات انتگرال-دیفرانسیل منفرد ضعیف از نوع ولترا با انواع مختلف تکینگی می باشد. ابتدا مسأله ی مقدار اولیه به یک معادله انتگرالی تبدیل می شود، سپس تبدیل هموارساز مناسب به صورتی اعمال می شود که جواب دقیق معادله ی حاصل هیچ تکینگی در مشتقات آن تا یک مرتبه ی خاص ندارد. معادله ی تبدیل یافته با استفاده از روشهم محلی تکه ای چندجمله ای روی یکافراز یکنواخت یا افراز نسبتاً درجه بندی شده حل خواهد شد. سرانجام تقریب های اسپلاین به دست آمده برای تقریب جواب مسأله مقدار اولیه که معمولاً غیر چندجمله ای هستند، استفاده خواهند شد. نتایج تئوری با چند مثال عددی آزمایش می شوند. همچنین مرتبه همگرایی بهینه برای دسته نسبتاً گسترده ای از تبدیلات هموار به دست خواهد آمد و فوق همگرایی الگوریتم پیشنهادی در یک حالت خاص اثبات خواهد