1403/09/01
مصطفی قادرمزی

مصطفی قادرمزی

مرتبه علمی: استادیار
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 45613
دانشکده: دانشکده علوم پایه
نشانی:
تلفن:

مشخصات پژوهش

عنوان
On α- scattered spaces
نوع پژوهش
مقاله ارائه شده کنفرانسی
کلیدواژه‌ها
α- scattered space ,functionally countable
سال 1388
پژوهشگران مصطفی قادرمزی ، مهرداد نامداری

چکیده

It is shown that every continuous image of a compact Hausdorff α–scattered space X (i.e., every subset A of X with |A|≥α has an isolated point relative to A and α is the least regular cardinal with this property) is Ь–scattered for some Ь≤α. consequently, if X is compact Hausdorff α –scattered where α≤c and c is the cardinally of continuum, then α=N_0 the first infinite cardinal and X is scattered. Surprisingly, it follows that in any compact Hausdorff space X, every non-empty subset has an isolated point if and only if every subset of X has an isolated point