در این پایان نامه مسائل مقدارویژه ی مربعی با ماتریس تعدیل کننده ی کم رتبه مورد مطالعه و بررسی قرار می گیرد. راهکار اصلی که در این جا مورد تجزیه و تحلیل قرار می گیرد روشی مبتنی بر حذف اولیه ی ماتریس کم رتبه ی تعدیل کننده از مسأله ی اصلی، حل مسأله ی مقدارویژه ی تعمیم یافته حاصل، تهی سازی مقادیر ویژه ی صفر و نامتناهی آن و در نهایت بهره گیری از آن جواب ها به روش اهرلیش-آبرت برای تقریب هم زمان ریشه های معادله ی 0 = (det P(x می باشد. اگر بردارهای ویژه مسأله ی نظیر مقادیر ویژه ی (P(x نیز مد نظر باشند از یک فرآیند تکرار معکوس برای محاسبه ی آنها استفاده خواهد شد. بررسی ها مؤید کم تر بودن پیچیدگی محاسباتی الگوریتم مد نظر نسبت به آخرین روش های موجود می باشد.