2025/12/5
Mohammad ali Ardalani

Mohammad ali Ardalani

Academic rank: Associate Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Science
ScholarId:
E-mail: M.Ardalani [at] uok.ac.ir
ScopusId: View
Phone: 09183717514
ResearchGate:

Research

Title
Bounded operators on weighted spaces of holomorphic functions on the upper half-plane
Type
JournalPaper
Keywords
differentiation operator, composition operator, holomorphic functions, weighted spaces, upper half-plane
Year
2012
Journal Studia Mathematica
DOI
Researchers Mohammad ali Ardalani ، Wolfgang Lusky

Abstract

Let $ \nu $ be a standard weight on the upper half-plane G, i.e $\nu : G\longrightarrow (0,\infty)$ is continuous and satisfies $\nu(\omega)=\nu(i Im\omega), \omega\in G, \nu(it)\geq\nu(is)$ if $t\geq s>0 $ and $ \lim_{t\reightarrow 0}\nu(it)=0 $. Put $\nu_{1}(\omega)=Im\omega\nu(\omega), \omega\in G $. We characterize boundedness and surjectivity of the differentiation operator $ D :H_{\upsilon}(G)\longrightarrow H_{\upsilon_{1}}(G)$. For example we show that $ D $ is bounded if and only if $\nu $ is at most of moderate growth. We also study composition operator on Hv (G ).