Within the framework of FRW cosmology, we study the QCD modified ghost scalar field models of dark energy (DE) in the presence of both interaction and viscosity. For a spatially nonflat FRW universe containing modified ghost dark energy (MGDE) and dark matter (DM), we obtain the equation of state of MGDE, the deceleration parameter as well as a differential equation governing the MGDE density parameter. We also investigate the growth of structure formation for our model in a linear perturbation regime. Furthermore, we reconstruct both the dynamics and potentials of the quintessence, tachyon, K-essence and dilaton scalar field DE models according to the evolution of the MGDE density.