2024 : 11 : 21
Kamran Chapi

Kamran Chapi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 55345306000
HIndex:
Faculty: Faculty of Natural Resources
Address: Department of Nature Reources Rehabilitation, Faculty of Natural Resources, University of Kurdistan, Pasdaran Blvd., Sanandaj, Kurdistan Province, IR Iran, POB 416, Postal Code 6617715175
Phone: +98-8733627721 Ext. 4321

Research

Title
Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach
Type
JournalPaper
Keywords
Mapping groundwater potential Least square support vector machine Random forest random subspace ensemble Logistic regression Kurdistan
Year
2019
Journal WATER RESOURCES MANAGEMENT
DOI
Researchers Shaghayegh Miraki ، Sasan Hedayati Zanganeh ، Kamran Chapi ، Vijay P. Singh ، Ataollah Shirzadi ، Himan Shahabi ، Binh Thai Pham

Abstract

Identifying areas with high groundwater potential is important for groundwater resources management. The main objective of this study is to propose a novel classifier ensemble method, namely Random Forest Classifier based on Random Subspace Ensemble (RS-RF), for groundwater potential mapping (GWPM) in Qorveh-Dehgolan plain, Kurdistan province, Iran. A total of 12 conditioning factors (slope, aspect, elevation, curvature, stream power index (SPI), topographic wetness index (TWI), rainfall, lithology, land use, normalized difference vegetation index (NDVI), fault density, and river density) were selected for groundwater modeling. The least square support vector machine (LSSVM) feature selection method with a 10-fold cross-validation technique was used to validate the predictive capability of these conditioning factors for training the models. The performance of the RS-RF model was validated using the area under receiver operating characteristic curve (AUROC), success and prediction rate curves, kappa index, and several statistical index-based measures. In addition, Friedman and Wilcoxon signed-rank tests were used to assess statistically significant level among the new model with the state-of-the-art soft computing benchmark models, such as random forest (RF), logistic regression (LR) and naïve Bayes (NB). Results showed that the new hybrid model of RS-RF had a very high predictive capability for groundwater potential mapping and exhibited the best performance among other benchmark models (LR, RF, and NB). Results of the present study might be useful to water managers to make proper decisions on the optimal use of groundwater resources for future planning in the critical study area.