2024 : 5 : 4
Jamil Bahrami

Jamil Bahrami

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId: 37123382200
Faculty: Faculty of Engineering
Address: Iran Sanandaj. Po.Box 416
Phone: 087133665310

Research

Title
Zirconia nanoparticle‑modified graphitic carbon nitride nanosheets for effective photocatalytic degradation of 4‑nitrophenol in water
Type
JournalPaper
Keywords
Graphitic carbon nitride · Zirconia · Photocatalysis · Water purification · Nanostructures
Year
2019
Journal Applied Water Science
DOI
Researchers mohanna zarei ، Jamil Bahrami ، Mohammad Zarei

Abstract

Zirconia ( ZrO2)-modified graphitic carbon nitride (g-C3N4) nanocomposite was used for effective photodegradation of 4-nitrophenol (4-NP) in water. The ZrO2 nanoparticles, g-C3N4 nanosheets, and ZrO2/ g-C3N4 nanocomposite were well characterized by including N2 adsorption, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy methods. ZrO2/ g-C3N4 nanocomposites were formed at room temperature using sonication and used for effective for photodegradation of 4-NP under irradiation with visible light. The nanocomposite samples resulted in a significant increase in photocatalytic activity compared with single-component samples of g-C3N4. In particular, the ZrO2/ g-C3N4 nanocomposite exhibited the significant increase in the photocatalytic activity. The ZrO2/ g-C3N4 nanocomposite showed an excellent catalytic activity toward the reduction of 4-NP in aqueous medium. Further, ZrO2/ g-C3N4 nanocomposite can be reused several times for photocatalytic degradation as well as for 4-NP adsorption.