2024 : 11 : 21
Himan Shahabi

Himan Shahabi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 23670602300
HIndex: 0/00
Faculty: Faculty of Natural Resources
Address: Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Phone: 087-33664600-8 داخلی 4312

Research

Title
A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment
Type
JournalPaper
Keywords
Landslide, machine learning, Bayes-based theory, meta-classifiers, Iran
Year
2019
Journal Geocarto International
DOI
Researchers Mosa Abdini ، Bahare Qasemyan ، Ataollah Shirzadi ، Himan Shahabi ، Kamran Chapi ، Binh Thai Pham ، Baharin Ben Ahmad ، DieuTien Bui

Abstract

A novel artificial intelligence approach of Bayesian Logistic Regression (BLR) and its ensembles [Random Subspace (RS), Adaboost (AB), Multiboost (MB) and Bagging] was introduced for landslide susceptibility mapping in a part of Kamyaran city in Kurdistan Province, Iran. A spatial database was generated which includes a total of 60 landslide locations and a set of conditioning factors tested by the Information Gain Ratio technique. Performance of these models was evaluated using the area under the ROC curve (AUROC) and statistical index-based methods. Results showed that the hybrid ensemble models could significantly improve the performance of the base classifier of BLR (AUROC = 0.930). However, RS model (AUROC = 0.975) had the highest performance in comparison to other landslide ensemble models, followed by Bagging (AUROC = 0.972), MB (AUROC = 0.970) and AB (AUROC = 0.957) models, respectively.