2024 : 11 : 21
Himan Shahabi

Himan Shahabi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 23670602300
HIndex: 0/00
Faculty: Faculty of Natural Resources
Address: Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Phone: 087-33664600-8 داخلی 4312

Research

Title
Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms
Type
JournalPaper
Keywords
Landslide; Meta classifier; Performance; Goodness-of-fit; GIS; India
Year
2019
Journal Sustainability
DOI
Researchers Binh Thai Pham ، Ataollah Shirzadi ، Himan Shahabi ، Ebrahim Omidvar ، Sushant K. Singh ، Mehebub Sahana ، Davod Talebpur Asl ، Baharin Ben Ahmad ، Nguyen Kim Quoc ، Lee Saro

Abstract

Landslides have multidimensional effects on the socioeconomic as well as environmental conditions of the impacted areas. The aim of this study is the spatial prediction of landslide using hybrid machine learning models including bagging (BA), random subspace (RS) and rotation forest (RF) with alternating decision tree (ADTree) as base classifier in the northern part of the Pithoragarh district, Uttarakhand, Himalaya, India. To construct the database, ten conditioning factors and a total of 103 landslide locations with a ratio of 70/30 were used. The significant factors were determined by chi-square attribute evaluation (CSEA) technique. The validity of the hybrid models was assessed by true positive rate (TP Rate), false positive rate (FP Rate), recall (sensitivity), precision, F-measure and area under the receiver operatic characteristic curve (AUC). Results concluded that land cover was the most important factor while curvature had no effect on landslide occurrence in the study area and it was removed from the modelling process. Additionally, results indicated that although all ensemble models enhanced the power prediction of the ADTree classifier (AUCtraining = 0.859; AUCvalidation = 0.813); however, the RS ensemble model (AUCtraining = 0.883; AUCvalidation = 0.842) outperformed and outclassed the RF (AUCtraining = 0.871; AUCvalidation = 0.840), and the BA (AUCtraining = 0.865; AUCvalidation = 0.836) ensemble model. The obtained results would be helpful for recognizing the landslide prone areas in future to better manage and decrease the damage and negative impacts on the environment.