2024 : 11 : 22
Hoger Ghahramani

Hoger Ghahramani

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 26032003000
HIndex:
Faculty: Faculty of Science
Address: Department of Mathematics, University of Kurdistan, Sanandaj, Iran. P. O. Bix. 416
Phone:

Research

Title
Additive mappings derivable at non-trivial idempotents on Banach algebras
Type
JournalPaper
Keywords
Banach algebras; derivable mappings; non-trivial idempotents; operator algebras.
Year
2012
Journal LINEAR & MULTILINEAR ALGEBRA
DOI
Researchers Hoger Ghahramani

Abstract

Let $\mathcal{A}$ be a Banach algebra with unity $I$ containing a non-trivial idempotent $P$ and $\mathcal{M}$ be a unital $\mathcal{A}$-bimodule. Under several conditions on $\mathcal{A}$, $\mathcal{M}$ and $P$, we show that if $d:\mathcal{A} \rightarrow \mathcal{M}$ is an additive mapping derivable at $P$ (i.e. $d(AB)=Ad(B)+d(A)B$ for any $A,B\in \mathcal{A}$ with $AB=P$), then $d$ is a derivation or $d(A)=\tau(A)+AN$ for some additive derivation $\tau:\mathcal{A} \rightarrow \mathcal{M}$ and some $N\in \mathcal{M}$, and various examples are given which illustrate limitations on extending some of the theory developed. Also, we describe the additive mappings derivable at $P$ on semiprime Banach algebras and $C^{*}$-algebras. As applications of above results, we characterize the additive mappings derivable at $P$ on matrix algebras, Banach space nest algebras, standard operator algebras and nest subalgebras of von Neumann algebras. Moreover we obtain some results about automatic continuity of linear (additive) mappings derivable at $P$ on various Banach algebras.