در این پایان نامه، خانواده ای از تجزیه متقارن مثلثی (ST) مورد مطالعه و بررسی قرار گرفته است. به کمک این تجزیه هر ماتریس نامنفرد می تواند به صورت حاصل ضرب یک ماتریس متقارن S و یک ماتریس مثلثی T بیان شود. بعلاوه S می تواند معین مثبت باشد. برای محاسبه تجزیه ST دو الگوریتم عددی بیان خواهد شد که در آنها S معین مثبت است. سپس به عنوان کاربردی از تجزیه ST ، سه پیش بهبود دهنده بلوکی برای مسائل نقطه زینی مورد بررسی قرار خواهند گرفت و عدد شرطی برای سه دستگاه متقارن و معین مثبت تخمین زده خواهد شد. نهایتا پس از اعمال هر یک از سه پیش بهبود دهنده مذکور بر مسئله نقطه زینی که دستگاه معادلات خطی نظیر آن نامتقارن است، روش عددی گرادیان مزدوج را برای دستگاه های متقارن و معین مثبت حاصل بکار می گیریم و با آزمایش های عددی تاثیر هر یک از پیش بهبود دهنده ها را بررسی خواهیم نمود.