2024 : 11 : 21
Fateme Daneshfar

Fateme Daneshfar

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId: 35078447100
HIndex:
Faculty: Faculty of Engineering
Address: Department of Computer Engineering, Faculty of Engineering, University of Kurdistan
Phone:

Research

Title
LyBERT: Multi-class classification and recommendations of lyrics using Bidirectional Encoder Representations from Transformers (BERT)
Type
Presentation
Keywords
Emotion classification; transformer approach; music lyrics recommendation; BERT; Music Information Retrieval; Emotion detection from lyrics
Year
2022
Researchers Revathy V.R ، Anitha S. Pillai ، Fateme Daneshfar

Abstract

Recent developments in music streaming applications and websites have made the music emotion recognition task continually active and exciting. Some of the music emotion recognition's significant challenges include data accessibility, data volume, and recognizing emotionally relevant features. Several researchers have proved that emotionally relevant features can be identified by analyzing lyrics and audio signals. The challenging part is the availability of datasets annotated with a lyrical emotion. The lyrical features relevant for identifying four emotions (happy, sad, relaxed, and angry) were recognized from the Music4All dataset in this study with the help of several machine learning algorithms based on a semantic psychometric model. Also, a transfer learning approach was used to learn the feelings of lyrics from an in-domain dataset and then predict the emotion of the target dataset. Further, the BERT model improves the overall model's accuracy (92%). A simple lyrics recommender system is also built using the Sentence Transformer model.