برنج از مهمترین غلات و اقلام غذایی جهان می باشد. نیمی از مردم جهان به برنج به عنوان یک غذای اصلی وابسته هستند. برنج غذای اصلی مردم آسیا و منبع اصلی پروتئین است. تنها در آسیای جنوبی، غذای اصلی 80% مردم ،برنج می باشد. پردازش تصویر، تکنولوژی تهیه و آنالیز تصاویر یک صحنه واقعی به وسیله کامپیوتر در راستای کسب اطلاعات یا کنترل یک پروسه است. نمونه بارز کاربرد پردازش تصویر، صنایع غذایی است. می توان با کمک بینایی ماشین، خصوصیات تصویر را استخراج نمود و از آن برای تشخیص و شناسایی کیفیت انواع محصولات استفاده کرد. روش های سنتی ارزیابی حسی در تعیین کیفیت مواد غذایی کاربرد زیادی دارند ولی این روش ها زمانبر و پرهزینه هستند. همچنین شرایط فیزیکی انسان مثل خستگی یا حتی شرایط روحی می تواند بر نتیجه کار تاثیرگذار باشد این عوامل سبب ایجاد انگیزه برای توسعه روش های جانشین است که در زمان کمتر و با دقت بیشتر خصوصیات کلیدی محصول را ارزیابی کنند. در سال های اخیر پژوهش های محدودی به منظور کیفیت سنجی و درجه بندی برنج با استفاده از فناوری بینایی ماشین انجام شده است. هدف از این پایان نامه، ارائه یک سیستم تشخیص ارقام و اصالت برنج با دقت بالا و کارامد می باشد. این پایان نامه به سه بخش اصلی تقسیم شده است. در بخش اول و دوم، تشخیص ارقام برنج به صورت دانه ای و توده ای مورد بررسی قرار گرفته اند. بخش سوم پایان نامه نیز، به بحث اصالت سنجی برنج می پردازد. منظور از اصالت سنجی برنج، تشخیص برنج اصل از ترکیبی می باشد. گام های تشخیص دانه ای ارقام برنج شامل تصویربرداری، قطعه بندی، استخراج ویژگی، انتخاب ویژگی و طبقه بندی می باشد. بعد از قطعه بندی، از هر دانه ی برنج سه نوع ویژگی شکلی، رنگی و بافتی استخراج شده است. با استفاده از چهار الگوریتم انتخاب ویژگی، ویژگی های برتر پیدا شدند. این ویژگی ها، ورودی شش طبقه بندی کننده بودند. بهترین ترکیب بین روش های انتخاب ویژگی و طبقه بندی کننده ها، مربوط به ویژگی های انتخاب شده توسط الگوریتم رقابت استعماری و ماشین بردار پشتیبان بود که به دقت بیش از 95 درصد رسید. سپس با استفاده از ویژگی های انتخاب شده توسط الگوریتم رقابت استعماری و چهار طبقه بندی کننده، یک طبقه کننده ی ترکیبی مورد استفاده قرار گرفت. تکیه اصلی در تشخیص توده ای ارقام برنج، بر اساس استخراج ویژگی های بافتی استوار اس