با رشد سریع دستگاه های تصویربرداری و اینترنت، حجم تصاویر دیجیتال و پایگاه داده های تصویری به سرعت رو به افزایش است، و از طرفی دسترسی کاربران به این تصاویر به سهولت صورت می-گیرد. در نتیجه نیاز به سیستم های بازیابی تصویر که بتواند به صورت مؤثر کار بازیابی تصویر را انجام دهد بیشتر شده است. در این پایان نامه، سعی بر آن است تا ساختاری برای پیاده سازی یک سیستم بازیابی تصاویر ارائه شود که بتواند بر اساس محتویات بصری تصاویر و با استفاده از یادگیری نظرات کاربران عمل بازیابی را انجام دهد. برای توصیف شباهت تصاویر در این پایان نامه از دو ویژگی رنگ و بافت تصاویر استفاده گردیده است. برای توصیف ویژگی رنگ از دو روش هیستوگرام سراسری رنگ و اتوکرلوگرام رنگ تصویر ناحیه-بندی شده استفاده شده است. محاسبه اتوکرلوگرام رنگ در روش پیشنهادی باعث مؤثرتر شدن و مقاوم شدن این توصیفگر نسبت به دوران و انتقال تصاویر می شود. اتوکرلوگرام ذاتاً یک روش توصیف محلی است؛ محاسبه اتوکرلوگرام رنگ در تصویر ناحیه بندی شده محلی بودن این اطلاعات را افزایش می دهد. برای اضافه نمودن اطلاعات سراسری رنگ، از هیستوگرام رنگ که یک توصیفگر کاملاً سراسری است در ترکیب با اتوکرلوگرام استفاده گردیده است. نتیجه این ترکیب، یک توصیفگر رنگ مؤثر است که می تواند بخوبی برای بازیابی تصاویر مورد استفاده قرار گیرد. مشکل عمده همه سیستم های مبتنی بر رنگ، ضعف در بازیابی تصاویر با محتوای مشابه و رنگ های متفاوت است. به منظور رفع این مسأله و بهبود روش مبتنی بر رنگ بیان شده از موجک گابور به عنوان ویژگی بافت در ترکیب با ویژگی های رنگ استفاده شد. برای ترکیب این سه ویژگی و محاسبه فاصله نهایی هر دو تصویر موجود، از یک سیستم مبتنی بر قواعد فازی استفاده شده است، که می تواند ترکیب بسیار مؤثر تری را ارئه نماید، و به تبع آن دقت نتایج نهایی بازیابی شده را نیز بهبود بخشد. تمامی مراحل ذکر شده به صورت برون خطی و تنها یکبار صورت می گیرند. در مرحله بازیابی تصاویر، سیستم با استفاده از بازخورد کاربران در پاسخ به تصاویر بازیابی شده برای پرس وجوی انجام شده، عمل یادگیری و بهبود نتایج را با استفاده از اتوماتای یادگیر توزیع شده، انجام می دهد. پایگاه داده مورد استفاده، مشتق شده از پایگاه داده COREL می باشد، که تصاویر آن بر اساس شباهت مفهومی در 10 رده طبقه بندی شده اند