2024 : 5 : 4
Bandar Astinchap

Bandar Astinchap

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 24342779500
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Bifunctional FePt@MWCNTs/Ru Nanoarchitectures: Synthesis and Characterization
Type
JournalPaper
Keywords
nanocomposites, CNTs, catalysis, FePt, filling/decorating
Year
2012
Journal Chemistry of Materials
DOI
Researchers Bandar Astinchap ، Rostam Moradian ، A. Ardu ، Carla Cannas ، Gaspare Varvaro ، Aldo Capobianchi

Abstract

The synthesis of novel nanoarchitectures is an important way to combine several properties into the same nanometric object. Magnetic, catalytic, optical, and electrical properties can be embedded and used for heating, moving, or monitoring the nanocomposite. Following this approach, smart materials exhibiting remarkable proper- ties could be obtained. Several nanocomposites are based on carbon nanotubes (CNTs). Because of the presence of empty cavities and very large surface external area, this allotropic form of carbon is especially suitable for this purpose and particularly for catalytic applications. In this work, a new general strategy to synthesize by a wet method three-block, smart nanocomposites based on MWCNTs is described. The new bifunctional material is shortly referred to as FePt@MWCNTs/ Ru(NPs) to point out that nanoparticles (NPs) of a magnetically soft alloy (FePt fcc) fill the MWCNTs cavity, whereas catalytic Ru NPs decorate the external wall. In this way well separated catalytic and magnetic NPs are obtained. All the synthetic steps are described in detail. TEM, HRTEM, XRD, and magnetic measurements by VSM are used to monitor all the steps and to prove the effectiveness of the method.