In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.