2024 : 11 : 21

Ali Soleyman Jahan

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 56258762200
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Vertex Decomposability of 2-CM and Gorenstein Simplicial Complexes of Codimension 3
Type
JournalPaper
Keywords
Vertex decomposable · Simplicial complex · Monomial ideal · Weakly polymatroidal ideal
Year
2016
Journal BULLETIN OF MATERIALS SCIENCE
DOI
Researchers Saied Mohammad Ajdani ، Ali Soleyman Jahan

Abstract

Let $\Delta$ be a simplicial complex on vertex set $ [n]$. It is shown that if $\Dlta$ is complete intersection, Cohen–Macaulay of codimension 2, Gorenstein of codimension 3, or 2-Cohen–Macaulay of codimension 3, then  $\Delta$ is vertex decomposable. As a consequence, we show that if $\Dlta$  is a simplicial complex such that $ I_{Delta} = I_t (C_n)$, where I_t (C_n)$ is the path ideal of length $t$ of $C_n$, then  $\Delta$ is vertex decomposable if and only$ if $t = n, t = n − 1$, or $n $ is odd and $ t = (n − 1)/2$