2024 : 11 : 21
Abdollah Salimi

Abdollah Salimi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 57198900488
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Enhanced visible light driven photoelectrocatalytic oxidation of ethanol at reduced graphene oxide/ CdS nanowires decorated with Pt nanoparticles
Type
JournalPaper
Keywords
Enhanced visible light
Year
2016
Journal Catalysis Science & Technology
DOI
Researchers Abas Arabzadeh ، Abdollah Salimi ، Maysam Ashrafi ، Saeid Soltaniyan ، Peyman Servati

Abstract

In this study, we report the preparation of a novel ternary hybrid consisting of reduced graphene oxide/ CdS nanowires decorated with Pt nanoparticles (rGO/CdS NWs/Pt NPs) as an efficient electrocatalytic and photoelectrocatalytic ethanol oxidation platform in alkaline medium. The synthesis was accomplished by a solvothermal method in the first step to prepare uniformly sized CdS NWs with diameters of 35 nm and lengths up to several micrometers, followed by a simple hydrothermal method to assemble CdS NWs decorated with Pt NPs onto rGO sheets using hydrazine as a reducing agent. Data regarding the morphology, structure and properties of the prepared nanocomposite were obtained through various characterization techniques including field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible and photoluminescence spectroscopy (PL). Assessing the electrocatalytic activity using cyclic voltammetry (CV) and amperometry techniques revealed that the ternary hybrid (rGO/ CdS NWs/Pt NPs) exhibited superior electrocatalytic activity toward ethanol oxidation in alkaline solution with a more negative onset potential compared to nanostructures with various components such as CdS NWs, rGO/CdS NWs, CdS NWs/Pt NPs and rGO/Pt NPs. Furthermore, experiments using low-power LED as a visible-light illumination source showed a dramatic increase in the electrocatalytic activity of the proposed nanohybrid toward ethanol oxidation accompanied by a shift of the onset potential to a more negative potential of −0.950 V vs. Ag/AgCl compared to −0.870 V in dark condition. This high electrocatalytic and photoelectrocatalytic performance can be ascribed to providing maximum interfacial contact of CdS NWs with rGO, which decreases the agglomeration of nanostructures and suppresses the photogenerated electron–hole recombination. Furthermore, accelera