This paper presents a new droop control strategy based on neuro-fuzzy technique to minimize voltage and frequency deviations in islanded microgrids (MGs) under severe changes in load. In islanded MGs, due to lack of the backup power, the imbalance between consumption and generation usually leads to violent voltage/frequency fluctuations. Therefore, designing a reliable control structure to prevent the MG instability is needed. The proposed control strategy is designed to maintain the system stability and minimize the voltage/frequency fluctuations regardless of the MG structure. The most important advantage of the proposed controller is independency from the MG structure and operating conditions. The simulation results show the appropriate operation and efficacy of the proposed controller in the presence of severe changes in load.