In this paper, we use the rational radial basis functions ( RRBFs) method to solve the Korteweg-de Vries (KdV) equation, particularly when the equation has a solution with steep front or sharp gradients. We approximate the spatial derivatives by RRBFs method then we apply an explicit fourth-order Runge-Kutta method to advance the resulting semi-discrete system in time. Numerical examples show that the presented scheme preserves the conservation laws and the results obtained from this method are in good agreement with analytical solutions