In this paper, we will introduce an algorithm for obtaining integrals of the form ∫x0 tm φ(t)dt, m ∈ N ∪ {0}, where φ is the scaling functions of Daubechies wavelet. In order to obtain these integrals in dyadic points for x’s, we have to solve a linear system. We will investigate, sparseness, well-conditioning and strictly diagonal dominant of matrices of these systems.