Graph neural networks and fuzzy models offer effective and practical methods for solving various tasks at the largescale graph level. Large-scale graph embedding based on deep methods and fuzzy models is categorized into fusion and integration. Feature extraction and graph structure at the local and global levels are based on augmented graph fusion. In fusion-based graph embedding, the fuzzy model is used as an activation function based on an aggregated process. In some cases, the fusion of graph neural network methods with fuzzy systems has been successful. However, no effective methods have been developed for integrating fuzzy models with deep methods. Two main issues are associated with this integration: (1) computational complexity due to the exponential increase in fuzzy rules with the number of features, and (2) the complexity of the solution space due to the combination of fuzzy regression rules between inputs and outputs. Additionally, modeling at the large-scale graph level using linear regression and graph neural networks is not sufficient. Therefore, this paper proposes a feature and structure combination method at the local and global levels using a combination of fuzzy modeling and graph transformers, an integrated deep learning technique called Fuzzy Graph Transformer (FuzzyGT). We conducted experiments on deep learning graph datasets to compare with the proposed model. Our method achieved the best results compared to other advanced models.