|
Abstract
|
We used the copper Phthalocyanine (Pc) on magnetic mesoporous silica nanoparticles. Therefore, several coordination sites became available which enhance chelating potency to load appropriate amounts of Gadolinium (Gd). This improves the catalytic activity in converting nitrile to tetrazole and selective oxidation of sulfides. Gadolinium (Gd) with incompletely occupied 4f and empty 5d orbitals can be used as the active component or as the promoter of the catalyst. Here, we outline the synthesis, characterization, and catalytic activity of a novel Gd(III) copper Phthalocyanine (Pc) coordination on the CoFe2O4/SBA-15 (CoFe2O4/SBA-15/CuPc@Gd). The prepared material was characterized using powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, elemental mapping, vibrating-sample magnetometer (VSM), Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform infrared spectroscopy, and nitrogen adsorption–desorption isotherm. The CoFe2O4/SBA-15/CuPc@Gd composite consists of a mesoporous structure with a surface area by BET and t-plot of 122.2 m2/g and 86.28 m2/g respectively, with a mean pore size of 5.37 nm, and pore volume of 0.164 cm3/g. The CoFe2O4/SBA-15/CuPc@Gd was successfully applied as a powerful catalyst for green synthesis of 5-substituted 1H-tetrazoles in water and selective oxidation of sulfides at room temperature. This catalyst was recovered and reused several times without a significant decrease in efficiency and stability. The catalyst could be fully recovered by an external magnetic field and showed good reusability
|