Title
|
A Distributed Control Framework for Integrated Photovoltaic-Battery-Based Islanded Microgrids
|
Type
|
JournalPaper
|
Keywords
|
Distributed control, dispersed storage and generation, inverters, microgrid, secondary control.
|
Abstract
|
This paper proposes a new cooperative control framework for coordination of energy storage units (ESUs), photovoltaic (PV) panels, and controllable load units in single-phase low voltage microgrids (MGs). The control objectives are defined and acted upon using a two level structure; primary and secondary control. Unlike conventional methods, a V–I droop mechanism is utilized in the primary control level. A distributed strategy is introduced for the secondary control level to regulate the MG voltage and manage state of charge (SoC) and power among the ESUs. The distributed secondary controllers are coordinated based on a leader-follower framework, where the leader restores the MG voltage to the rated value and the followers manage the sharing of power between the ESUs so as to balance the SoCs. Once the ESUs reach the minimum charge level, the information state increases above a positive critical value, at which point load control units perform load shedding. Similarly, fair PV curtailment is conducted in case the ESUs reach the maximum charge level. Experimental results are presented to demonstrate the efficacy of the proposed method.
|
Researchers
|
Josep M. Guerrero (Fourth Researcher), Dylan Lu (Third Researcher), Qobad Shafiee (Second Researcher), Mohammad Sadegh Golsorkhi (First Researcher)
|