2024 : 11 : 21
Sadegh Sulaimany

Sadegh Sulaimany

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId: 123612
HIndex:
Faculty: Faculty of Engineering
Address: Room 102 Computer Engineering Group Engineering Dept.
Phone: 08733627722 (داخلی 3336)

Research

Title
Identification of the effects of the existing network properties on the performance of current community detection methods
Type
JournalPaper
Keywords
Community detectionNetwork propertyScale-freeSmall-world
Year
2022
Journal Journal of King Saud University-Computer and Information Sciences
DOI
Researchers Marziyeh Karimian Khoozani ، Sadegh Sulaimany

Abstract

Community detection has attracted many attentions recently. Considering the effect of current network structure on the result of the recent community detection methods is useful to yield a probable performance trade-off for future algorithm selection. In this paper, we first offer a new ranking method with 3 levels for small-world and scale-free networks to measure such properties more accurately, in determining their influences on the methods performance. Thereafter, we examine 12 popular community detection methods and 43 related datasets. The results show that 24 datasets have small-world properties, 5 datasets have scale-free properties, and 9 datasets have both. However, 5 of them have no features of small-world or scale-free networks. It is also observable that 4 methods work better for networks with small-world features and 8 for both small-world and scale free. Finally, we propose a flexible community detection method based on the detected network type.