We introduce iterative algorithms for finding a common element of the set of solutions of a system of equilibrium problems and of the set of fixed points of a finite family and a left amenable semigroup of nonexpansive mappings in a Hilbert space. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. Our results extend, for example, the recent result of [7] to systems of equilibrium problems.