Visual comfort affects the quality of classrooms as well as student learning. A practice-oriented approach discovers how the gap between academic research and its application in building design can be addressed. Nevertheless, the physical characteristics design of daylighting systems, including window sizes, shapes, dimensions, and materials, are considered fundamental challenges for their practicability. In this study, the physical characteristics design of daylighting systems, including window sizes, shapes, dimensions, and materials, are considered in a designed sample school, and the daylight metrics were analyzed to achieve more trustworthy and applicable daylighting systems. Grasshopper (Honeybee-Ladybug), as a parametric control method, was applied to simulate the daylighting quality for various educational spaces in a secondary school in Sanandaj City, based on average ‘Daylight Factor’, ‘Daylight Autonomy’, ‘Useful Daylight Illuminance’, and ‘Annual Sunlight Exposure’. These metrics were examined to discover the relationship between window size and positions on visual comfort. The results indicate daylighting assessments are a solid approach to revising the architectural design mistakes at the primary designing phase. Architects and other building designers or energy consumption assessors can apply the design improvement process to present more sufficient and successful architectural details. This is a fundamental step toward the implementation of green buildings.