2024 : 11 : 21
Rahman Hallaj

Rahman Hallaj

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 8345774100
HIndex:
Faculty: Faculty of Science
Address: Telephone: +988733664600-8 Postal Code: 66177-15175 Address: University of Kurdistan, Pasdaran St, Sanandaj, Kurdistan, Iran
Phone:

Research

Title
Ni‑hemin metal–organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics
Type
JournalPaper
Keywords
Ni-hemin MOF, Peroxidase activity, TMB, H2O2, MCF-7 and Caucasian gastric adenocarcinoma cancer cells, Therapeutics efficiency
Year
2018
Journal JOURNAL OF NANOBIOTECHNOLOGY
DOI
Researchers negar Alizadeh ، Abdollah Salimi ، Rahman Hallaj ، Fardin Fathi ، farzad Soleimani

Abstract

Background: Given the great benefits of artificial enzymes, a simple approach is proposed via assembling of Ni2+ with hemin for synthesis of Ni-hemin metal–organic-frameworks (Ni-hemin MOFs) mimic enzyme. The formation of the Ni-hemin MOFs was verified by scanning electron microscopy, Transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy and UV–vis absorption spectroscopy. This novel nanocomposite exhibited surprising peroxidase like activity monitored by catalytic oxidation of a typical peroxidase substrate, 3,3,5,5′-tetramethylbenzidine, in the presence of H2O2. By using folic acid conjugated MOF nanocomposite as a recognition element, we develop a colorimetric assay for the direct detection of cancer cells. Results: The proposed sensor presented high sensitivity and selectivity for the detection of human breast cancer cells (MCF-7) and Human Caucasian gastric adenocarcinoma. By measuring UV–vis absorbance response, a wide detection range from 50 to 105 cells/mL with a detection limit as low as 10 cells/mLwas reached for MCF-7 cells. We further discuss therapeutics efficiency of Ni-hemin MOFs in the presence of H2O2 and ascorbic acid. Peroxidase-mimic Ni-hemin MOFs as reactive oxygen species which could damage MCF-7 cancer cells, however for normal cells (human embryonic kidney HEK 293 cells) killing effect was negligible. Conclusions: Based on these behaviors, the developed