To identify new HSP90 inhibitors, the ATP binding site of the N-domain of HSP90 was targeted by molecular docking of a library of 23,129,083 compounds (from the ZINC database) to the ATP binding site of the N-domain of HSP90. Structure-based virtual screen (SBVS) was performed using idock software on the istar web platform. Based on idock binding energies, 40 molecules were considered as HSP90 inhibitors. In the next step, the 40 molecules and the compound AT13387 (Onalespib) were docked to the XJX binding site using AutoDock Vina software. By comparing the binding energies of the 40 molecules selected with compound AT13387, 26 molecules were selected. By applying the rule of five, eight molecules were selected as hit compounds. The interactions of these eight compounds with the XJX binding site were obtained and investigated, and two-dimensional interaction maps were provided for the others. Finally, computing the toxicity of these compounds with the ProTox- II webserver shows that three compounds, namely ZINC89453765, ZINC23918431 and ZINC12414793, can be considered as good HSP90 inhibitors. These compounds are inactive for nuclear receptor signalling and stress response pathways including heat shock response, so do not have the limitations of common HSP90 inhibitors. They are also inactive for hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity and cytotoxicity.