2024 : 3 : 29
Roonak Daghigh

Roonak Daghigh

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 55405375500
Faculty: Faculty of Engineering
Address:
Phone:

Research

Title
An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems
Type
JournalPaper
Keywords
Submarine, Diesel engines, Heat recovery, CCHP, Absorption chiller
Year
2015
Journal ENERGY CONVERSION AND MANAGEMENT
DOI
Researchers Roonak Daghigh ، abdellah shafieian

Abstract

High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the thermal system. The effect of parameters of this system on output water temperature was also analyzed. Finally, the performance of mixed effect absorption chiller was examined and the findings indicated that in the exhaust gas mass ratio of 0.375, the sys