2024 : 11 : 21
Nasser Behroozi-Khazaei

Nasser Behroozi-Khazaei

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 55842006300
HIndex:
Faculty: Faculty of Agriculture
Address: 1nd floor, Faculty of Agriculture building
Phone:

Research

Title
Applied machine vision and artificial neural network for modeling and controlling of the grape drying process
Type
JournalPaper
Keywords
Grape Drying Machine vision Neural network On-line control
Year
2013
Journal Computers and Electronics in Agriculture
DOI
Researchers Nasser Behroozi-Khazaei ، Tamior Tavakoli Hashjin ، Hassan Ghassemian ، Mohammad Hadi Khosh Taghaza ، Ahmad Banakar

Abstract

This paper presents a new method for predictive modeling of grape drying process for on-line monitoring and controlling of this process. The shrinkage during drying plays an important role in determining the accuracy of the drying model. Machine vision (MV) was used to measure grapes shrinkage during drying process to produce raisins. An artificial neural network (ANN) was developed to predictive model of the grape drying in a hot air dryer. ANN inputs were air drying temperature, velocity, shrinkage and moisture content at time and output was moisture content at time t + Dt. The results showed that the ANN had better performance than MLR. The best ANN was obtained by three layers (4 inputs, 5 nodes in hidden layer and 1 output) with 0.00004 MSE and 0.99947 R2 for training and 0.00003 MSE and 0.99952 R2 for testing data. This ANN model could predict the moisture content of grapes at time t + Dt by knowing the input data at time t. Also, this ANN model and MV were coupled for on-line control of the grape drying process.