2024 : 11 : 21

Mohammad Zarrin

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 14421916000
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Ensuring a Group is Weakly Nilpotent
Type
JournalPaper
Keywords
Nilpotent group; Simple group
Year
2012
Journal COMMUNICATIONS IN ALGEBRA
DOI
Researchers Mohammad Zarrin

Abstract

Let m n be positive integers and  be a class of groups. We say that a group G satisfies the condition m n, if for every two subsets M and N of cardinalities m and n, respectively, there exist x ∈ M and y ∈ N such that x y ∈ . In this article, we study groups G satisfies the condition m n, where  is the class of nilpotent groups. We conjecture that every infinite m n-group is weakly nilpotent (i.e., every two generated subgroup of G is nilpotent). We prove that if G is a finite non-soluble group satisfies the condition m n, then G ≤ maxm nc2maxmn2 logmaxmn 60 !, for some constant c (in fact c ≤ maxm n). We give a sufficient condition for solubility, by proving that a m n-group is a soluble group whenever m +n < 59. We also prove the bound 59 cannot be improved and indeed the equality for a nonsoluble group G holds if and only if G  A5, the alternating group of degree 5.