2024 : 11 : 21
Mohammad Rezaei

Mohammad Rezaei

Academic rank: Associate Professor
ORCID: 0000-0002-0619-2846
Education: PhD.
ScopusId: 16639269700
HIndex:
Faculty: Faculty of Engineering
Address: University of Kurdistan - Faculty of Engineering - Department of Mining Engineering
Phone: 087-33660073

Research

Title
Prediction of Hardgrove Grindability Index (HGI) from the Coal Chemical Properties Using Artificial Neural Networks
Type
Presentation
Keywords
Coal, HGI, Artificial neural network, Linear multivariable regression, Coal chemical properties
Year
2009
Researchers Saber Khoshjavan ، Mohammad Rezaei ، Bahram Rezai

Abstract

In this research, the effect of different parameters of coal composition (coal chemical properties) were studied, to predict the coal HGI values index.To estimate the HGI values artificial neural networks (ANNs) and linear multivariable regression methods were used for 300 data. In this work, ten input parameters, such as moisture, volatile matter (dry), fixed carbon (dry), ash (dry), total sulfur (organic & pyretic) (dry), Btu/lb (dry), carbon (dry), hydrogen (dry), nitrogen (dry) as well as oxygen (dry), were used. For selecting the best method to predict HGI values, the responses of aforementioned methods were compared. The results of ANNs, show that the training and test data’s square correlation coefficients (R2) achieved at 0.962 and 0.82 respectively. The equation of linear multivariable regression for HGI values were produced. Square correlation coefficients, (R2), from regression achieved at 0.76. Sensitivity analysis showed that volatile matter (dry), Btu/lb (dry), carbon (dry), hydrogen (dry), fixd carbon (dry), nitrogen (dry) and oxygen (dry) are the most effective parameters on the HGI.