1403/02/01
محمد قادرمزی

محمد قادرمزی

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 17345456400
دانشکده: دانشکده علوم پایه
نشانی:
تلفن: 0871-6624133

مشخصات پژوهش

عنوان
Modification of carbon ceramic electrode prepared with sol–gel technique by a thin film of chlorogenic acid: application to amperometric detection of NADH
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Carbon ceramic electrode; Sol–gel; Chlorogenic acid; NADH; Amperometry
سال
2005
مجله TALANTA
شناسه DOI
پژوهشگران Abdollah Salimi ، Rahman Hallaj ، Mohammad Ghadermazi

چکیده

The carbon ceramic electrode prepared with sol–gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1–120 m. The detection limit (S/N = 3) and sensitivity are 0.2M and 25 nA M−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility. © 2004 Elsevier B.V. All rights reserved.