2024 : 11 : 21
Mehrdad Khamforoush

Mehrdad Khamforoush

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 21742691800
HIndex:
Faculty: Faculty of Engineering
Address: Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.
Phone:

Research

Title
Percolation thresholds of a group of anisotropic three-dimensional fracture networks
Type
JournalPaper
Keywords
Discrete fracture networks- Excluded volume- Fisher distribution- Connectivity-Numerical simulation- Fracture orientation
Year
2007
Journal EUROPEAN PHYSICAL JOURNAL A
DOI
Researchers Mehrdad Khamforoush ، Kighboad Shams

Abstract

Percolation thresholds (average number of connections per object) of two models of anisotropic three-dimensional (3D) fracture networks made of mono-disperse hexagons have been calculated numerically. The first model is when the fracture networks are comprised of two groups of fractures that are distributed in an anisotropic manner about two orthogonal mean directions, i.e., Z- and X-directions. We call this model bipolar anisotropic fracture network (BFN). The second model is when three groups of fractures are distributed about three orthogonal mean directions, that is Z-, X-, and Y-directions. In this model three families of fractures about three orthogonal mean directions are oriented in 3D space. We call this model tripolar anisotropic fracture network (TFN). The finite-size scaling method is used to predict the infinite percolation thresholds. The effect of anisotropicity on percolation thresholds in X-, Y-, and Z-directions is investigated. We have revealed that as the anisotropicity of networks increases, the percolation thresholds in X-, Y-, and Z-directions span the range of 2.3 to 2.0, where 2.3 and 2.0 are extremums of percolation thresholds for isotropic and non-isotropic orthogonal fracture networks, respectively.