In the present paper, a novel combined cooling, heating and power cycle is studied. In the cycle, three technologies of molten carbonate fuel cell, Stirling engine (Alpha type) and Kalina power generation cycle are combined. The Stirling engine and Kalina cycle are used to recover heat from the stack gases of the molten carbonate fuel cell. Also, the condenser of the Kalina cycle is used to supply heating, while the cooling load is produced by an absorption chiller. In analyzing this cycle, a parametric study and a sensitivity analysis are presented to investigate the cycle from thermodynamic and environmental points of views. The analyses are carried out by selecting 7 design parameters, which four-most important parameters include current density, air to fuel ratio at the fuel cell input, fuel cell input pressure and the temperature ratio at the Stirling engine. The results showed that the combined cycle saves up to 45% fuel in comparison to the conventional systems. The overall and electrical efficiencies of the cycle can reach more than 70% and 50%, respectively. Furthermore, carbon monoxide and carbon dioxide yearly reduction for 6000 h of operation is 15 tons and 225 tons, respectively.