2024 : 11 : 21
Kaveh Mollazade

Kaveh Mollazade

Academic rank: Associate Professor
ORCID: 0000-0001-7379-839X
Education: PhD.
ScopusId: 34771823000
HIndex:
Faculty: Faculty of Agriculture
Address: Room no. 243, 1st floor, Faculty of Agriculture
Phone: (+98) 87-33627723

Research

Title
Towards a Multispectral Imaging System for Spatial Mapping of Chemical Composition in Fresh-Cut Pineapple (Ananas comosus)
Type
JournalPaper
Keywords
dimensionality reduction; hypercube; quality evaluation; wavelength selection
Year
2023
Journal Foods
DOI
Researchers Kaveh Mollazade ، Norhashila Hashim ، Manuela Zude

Abstract

With increasing public demand for ready-to-eat fresh-cut fruit, the postharvest industry requires the development and adaptation of monitoring technologies to provide customers with a product of consistent quality. The fresh-cut trade of pineapples (Ananas comosus) is on the rise, favored by the sensory quality of the product and mechanization of the cutting process. In this paper, a multispectral imaging-based approach is introduced to provide distribution maps of moisture content, soluble solids content, and carotenoids content in fresh-cut pineapple. A dataset containing hyperspectral images (380–1690 nm) and reference measurements in 10 regions of interest of 60 fruit (n = 600) was prepared. Ranking and uncorrelatedness (based on ReliefF algorithm) and subset selection (based on CfsSubset algorithm) approaches were applied to find the most informative wavelengths in which bandpass optical filters or light sources are commercially available. The correlation coefficient and error metrics obtained by cross-validated multilayer perceptron neural network models indicated that the superior selected wavelengths (495, 500, 505, 1215, 1240, and 1425 nm) resulted in prediction of moisture content with R = 0.56, MAPE = 1.92%, soluble solids content with R = 0.52, MAPE = 14.72%, and carotenoids content with R = 0.63, MAPE = 43.99%. Prediction of chemical composition in each pixel of the multispectral images using the calibration models yielded spatially distributed quantification of the fruit slice, spatially varying according to the maturation of single fruitlets in the whole pineapple. Calibration models provided reliable responses spatially throughout the surface of fresh-cut pineapple slices with a constant error. According to the approach to use commercially relevant wavelengths, calibration models could be applied in classifying fruit segments in the mechanized preparation of fresh-cut produce.