2024 : 11 : 21
Kaveh Mollazade

Kaveh Mollazade

Academic rank: Associate Professor
ORCID: 0000-0001-7379-839X
Education: PhD.
ScopusId: 34771823000
HIndex:
Faculty: Faculty of Agriculture
Address: Room no. 243, 1st floor, Faculty of Agriculture
Phone: (+98) 87-33627723

Research

Title
Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review
Type
JournalPaper
Keywords
Hyperspectral imaging, Fruit, Vegetables, Mushrooms, Artificial intelligence, Quality assessment
Year
2022
Journal Biosystems Engineering
DOI
Researchers Jana Wieme ، Kaveh Mollazade ، Ioannis Malounas ، Manuela Zude ، Ming Zhao ، Aoife Gowen ، Dimitrios Argyropoulos ، Spyros Fountas ، Jonathan Van Beek

Abstract

Over the last two decades, research in hyperspectral imaging has been increasing and its use in horticulture is expected to be spreading in the coming years. The emerging techniques are currently gaining interest of the research community. However, there are still challenges to the applicability. In this review we demonstrate that hyperspectral imaging can be used as an effective tool for fruit, vegetables and mushrooms in assessing quality parameters related to well defined variables that can be analysed in the laboratory, as well as complex properties such as maturity, ripeness, detection of biotic defects, physiological disorders, mechanical damages, and sensory quality. Therefore, this paper starts by giving an overview of the quality concept of produce, measuring principles, theory and analysis of hyperspectral imaging systems. Then, emerging techniques to monitor and assess quality parameters, both pre- and postharvest, are described, as well as applications of these are reviewed and discussed. Afterwards, this review proceeds by illustrating the current and potential use of artificial intelligence and its subdomains, machine learning and deep learning, for hyperspectral imaging analysis in horticulture. Lastly, some challenges and considerations for future research are highlighted, including improvement of data availability, possible solutions for an improved integration of artificial intelligence and the transfer of knowledge from research parameters to parameters relevant for industrial stakeholders.