Here, generation of PBHs and secondary GWs from non-canonical inflation with quartic potential have been probed.It is illustrated that, quartic potential in non-canonical setup with a generalized power-law Lagrangian density can source a consistent inflationary era with the latest observational data. Besides, we show that our model satisfies the swampland criteria. At the same time, defining a peakedfunction of inflaton field as non-canonical mass scale parameter M(φ) of the Lagrangian, gives rise to slow down the inflaton in a while. In this span, namely Ultra-Slow-Roll (USR) stage, the amplitude of the curvature perturbations on small scales enlarges versus CMB scales. It has been illustrated that, further to the peaked aspect of the chosen non-canonical mass scale parameter, the amount of α parameter of the Lagrangian has enlarging impact on the amplitude of the scalar perturbations. As a consequence of adjusting three parameter Cases of this model, three Cases of PBHs in proper mass scopes to explain LIGO-VIRGO events, microlensing events in OGLE data and DM content in its totality, could be produced. In the end, power-law behavior of the current density parameter of gravitational waves GW0 in terms of frequency has been examined. Also, the logarithmic power index as n = 3 − 2/ ln( fc/f ) in the infrared regime is obtained.