2024 : 11 : 21
Kamran Chapi

Kamran Chapi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 55345306000
HIndex:
Faculty: Faculty of Natural Resources
Address: Department of Nature Reources Rehabilitation, Faculty of Natural Resources, University of Kurdistan, Pasdaran Blvd., Sanandaj, Kurdistan Province, IR Iran, POB 416, Postal Code 6617715175
Phone: +98-8733627721 Ext. 4321

Research

Title
A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides
Type
JournalPaper
Keywords
hybrid intelligence; relevance vector machine; imperialist competitive algorithm; shallow landslide; GIS; Vietnam
Year
2018
Journal Remote Sensing
DOI
Researchers DieuTien Bui ، Himan Shahabi ، Ataollah Shirzadi ، Kamran Chapi ، Nhat-Duc Hoang ، Binh Thai Pham ، Quang-Thanh Bui ، Chuyen-Trung Tran ، Mahdi Panahi ، Baharin Ben Ahmad ، Lee Saro

Abstract

This research aims at proposing a new artificial intelligence approach (namely RVM-ICA) which is based on the Relevance Vector Machine (RVM) and the Imperialist Competitive Algorithm (ICA) optimization for landslide susceptibility modeling. A Geographic Information System (GIS) spatial database was generated from Lang Son city in Lang Son province (Vietnam). This GIS database includes a landslide inventory map and fourteen landslide conditioning factors. The suitability of these factors for landslide susceptibility modeling in the study area was verified by the Information Gain Ratio (IGR) technique. A landslide susceptibility prediction model based on RVM-ICA and the GIS database was established by training and prediction phases. The predictive capability of the new approach was evaluated by calculations of sensitivity, specificity, accuracy, and the area under the Receiver Operating Characteristic curve (AUC). In addition, to assess the applicability of the proposed model, two state-of-the-art soft computing techniques including the support vector machine (SVM) and logistic regression (LR) were used as benchmark methods. The results of this study show that RVM-ICA with AUC = 0.92 achieved a high goodness-of-fit based on both the training and testing datasets. The predictive capability of RVM-ICA outperformed those of SVM with AUC = 0.91 and LR with AUC = 0.87. The experimental results confirm that the newly proposed model is a very promising alternative to assist planners and decision makers in the task of managing landslide prone areas.