2024 : 4 : 30
Jahanshir Amini

Jahanshir Amini

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 33467559700
Faculty: Faculty of Agriculture
Address:
Phone:

Research

Title
Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat’s take-all disease
Type
JournalPaper
Keywords
Lemongrass oil, Clove oil, Natural fungicides, Mesoporous silica nanoparticles, Alginate, Take-all disease
Year
2020
Journal PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
DOI
Researchers Maryam Sattari ، Jahanshir Amini ، Rahman Hallaj

Abstract

Combined application of plant essential oils (EOs) with known antimicrobial effects and silica nanocapsules with high loading capacity and protection capability of the EOs make them proper candidates for creating environmentally friendly fungicides. In this study, EOs of the Lemongrass (LGO) and Clove (CO) were used against Gaeumannomyces graminis var. tritici (Ggt), a causal agent of take-all disease of wheat. To provide controlled delivery of the EOs, they were encapsulated into mesoporous silica nanoparticles (MSNPs) and then compared to the effects of pure EOs both in- vitro and in- vivo. MSNPs were synthesized via the sol-gel process. Various techniques such as Fourier transform infrared spectroscopy (FTIR), the Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), and UV-Vis spectroscopy were used to evaluate the successful loading of the EOs into the pore of MSNPs. The encapsulation efficiency (EE) was calculated as high as 84.24 % for LGO and 80.69 % for CO, while loading efficiency (LE) was determined 36 % and 29% for LGO and CO, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) displayed spherical shapes and porous structures with average diameters of 50-70 nm. Recognition of the main components of the EOs via gas chromatographic-mass spectrometry (GC–MS) before and after the EO loading, detected eugenol and citral as the most frequent compounds in LGO and CO, respectively. For antifungal test in- vitro, selected concentrations of the pure EOs, EOs loaded in MSNPs (EOs- MSNPs) and Mancozeb ® fungicide based on pre-tests were mixed using potato dextrose agar (PDA). The inhibition percentage (IP) of fungal growth at each concentration, as well as minimum inhibition concentration (MIC) and minimum fungicidal concentrations (MFC) were obtained. The results indicated that antifungal effects in the encapsulated form increased by up to three times. In- vivo, the sterile wheat seeds were treated with pure EOs, EOs-MSNPs, and mancozeb at MFC concentration. Also, in order to keep on the EOs-MSNPs around the seeds, sodium alginate was used. The consequences of in- vivo experiments indicated that rate of disease control in presence of EOs-MSNPs and mancozeb was the same (~70 %) and higher than pure EOs (LGO: 57.44 %, CO: 49%). Also, improving the growth parameters in wheat plant, the covering of the EOs-MSNPs in alginate, had better control (84 %) than that of EOs-MSNPs alone. Further, the release kinetics studies showed a gradual release of LGO and CO from MSNPs for four weeks in water and for five weeks in the soil-plant system. To the best of our knowledge, this is the first report of the control effect of LGO, CO, and their nanocapsule in MSNPs against the take-all disease of wheat. These results showed that the EOs-MSNPs can be a safe product for the efficient control of take-all disease in wheat crop.