2025/12/5
Hossein Bevrani

Hossein Bevrani

Academic rank: Professor
ORCID: 0000-0003-4658-9095
Education: PhD.
H-Index:
Faculty: Faculty of Science
ScholarId: View
E-mail: hossein.Bevrani [at] uok.ac.ir
ScopusId:
Phone:
ResearchGate:

Research

Title
Penalized and ridge-type shrinkage estimators in Poisson regression model
Type
JournalPaper
Keywords
Shrinkage estimator; LASSO, Elastic-Net; Multicollinearity, Ridge regression, Efficiency
Year
2022
Journal Communications in Statistics - Simulation and Computation
DOI
Researchers Mehri Noori Asl Sayedlar ، Hossein Bevrani ، Reza Arabi Belaghi

Abstract

The paper considers the problem of estimation of the regression coefficients in a Poisson regression model under multicollinearity situation. We propose non-penalty Stein-type shrinkage ridge estimation approach when it is conjectured that some prior information is available in the form of potential linear restrictions on the coefficients. We establish the asymptotic distributional biases and risks of the proposed estimators and investigate their relative performance with respect to the unrestricted ridge estimator. For comparison sake, we consider the two penalty estimators, namely, least absolute shrinkage and selection operator and Elastic-Net estimators and compare numerically their relative performance with the other listed estimators. Monte-Carlo simulation experiment is conducted to evaluate the performance of each estimator in terms of the simulated relative efficiency. The results show that the shrinkage ridge estimators perform better than the penalty estimators in certain parts of the parameter space. Finally, a real data example is illustrated to evaluate of the proposed methods.