2025/12/5
Hossein Bevrani

Hossein Bevrani

Academic rank: Professor
ORCID: 0000-0003-4658-9095
Education: PhD.
H-Index:
Faculty: Faculty of Science
ScholarId: View
E-mail: hossein.Bevrani [at] uok.ac.ir
ScopusId:
Phone:
ResearchGate:

Research

Title
Improved estimators in bell regression model with application
Type
JournalPaper
Keywords
Bell regression, Monte Carlo simulation, relative efficiency, James–Stein-type estimator.
Year
2024
Journal JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
DOI
Researchers Solmaz Seifollahi ، Hossein Bevrani ، Zakariya Yahya Algamal

Abstract

In this paper, we propose the application of shrinkage strategies to estimate coefficients in the Bell regression models when prior information about the coefficients is available. The Bell regression models are well-suited for modelling count data with multiple covariates. Furthermore, we provide a detailed explanation of the asymptotic properties of the proposed estimators, including asymptotic biases and mean squared errors. To assess the performance of the estimators, we conduct numerical studies using Monte Carlo simulations and evaluate their simulated relative efficiency. The results demonstrate that the suggested estimators outperform the unrestricted estimator when prior information is taken into account. Additionally, we present an empirical application to demonstrate the practical utility of the suggested estimators.