2024 : 11 : 21
Hoger Ghahramani

Hoger Ghahramani

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 26032003000
HIndex:
Faculty: Faculty of Science
Address: Department of Mathematics, University of Kurdistan, Sanandaj, Iran. P. O. Bix. 416
Phone:

Research

Title
Lie centralizers at zero products on a class of operator algebras
Type
JournalPaper
Keywords
Lie centralizer‎, ‎commuting map‎, ‎operator algebra‎, ‎nest algebra
Year
2021
Journal Annals of Functional Analysis
DOI
Researchers Hoger Ghahramani ، Wu Jing

Abstract

‎Let $\A$ be an algebra‎. ‎In this paper we consider the problem of determining a linear map $\psi$ on $\A$ satisfying $a,b\in \A$‎, ‎$ab=0 ==> \psi([a,b])=[\psi(a),b] \‎, ‎(C1) $ or $ab=0 ==> \psi([a,b])=[a,\psi(b)] \‎, ‎(C2)$‎. ‎We first compare linear maps satisfying $(C1)$ or $(C2)$‎, ‎commuting linear maps‎, ‎and Lie centralizers with a variety of examples‎. ‎In fact‎, ‎we see that linear maps satisfying $(C1)$‎, ‎$(C2)$ and commuting linear maps are different classes of each other‎. ‎Then we introduce a class of operator algebras on Banach spaces such that if $\A$ is in this class‎, ‎then any linear map on $\A$ satisfying $(C1)$ (or $(C2)$) is a commuting linear map‎. ‎As an application of these results we characterize Lie centralizers and linear maps satisfying $(C1)$ (or $(C2)$) on nest algebras‎.