This paper focused on scheduling problems arising in a two-machine, identical parts robotic cell configured in a flow shop. Through current research, a mathematical programming model on minimizing cycle time as well operational cost, considering availability of robotic cell as a constraint, is proposed to search for the optimum allocation and schedule of operations to these two machines. Two solution procedures, including weighted sum method and ∊-constraint method are provided. Based on the weighted sum method, like some previous studies, sensitivity analysis on model parameters were done and the optimum solutions were compared with previous results, while the ∊-constraint method can find the Pareto optimal solutions for problems with up to 18 operations in a reasonable time.