2024 : 11 : 21
Hossein Azizi

Hossein Azizi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 56186773800
HIndex:
Faculty: Faculty of Engineering
Address:
Phone: 0871-6660073

Research

Title
A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic
Type
JournalPaper
Keywords
,A-type granite ,Extensional tectonic regime, Continental uplift ,Northwest Iran block Gondwan
Year
2017
Journal Journal of Geodynamics
DOI
Researchers Hossein Azizi ، Tahmineh Kazemi ، YoshiHero Asaha

Abstract

The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5–1280 ppm), Zn (43.7–358 ppm), Y(17.9–177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (< + 3) and high variation of 87Sr/86Sr(initial) ratios are evidence of the role of the continental component for the evolution of A-type granitoids in the Hasansalaran area. Because of the high contents of Ta, Yb, Nb and Y, all samples are plotted in the within-plate tectonic regime without interfering oceanic released fluids in the subduction zone. These high Nb content rocks (37.2–342 ppm without one sample) are classified as A1-type granitoids. Based on the distribution of A1- and A2-type granitoids in the Late Paleozoic in northwest Iran, the existence of some gabbroic rocks with tholeiitic to alkali composition and a long gap for magmatic activities in the area from 550 to 360 Ma (approximately 180 my.a.) between the Zagros and Tabriz faults, we suggest a new thematic model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.