2024 : 11 : 21
Hossein Azizi

Hossein Azizi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 56186773800
HIndex:
Faculty: Faculty of Engineering
Address:
Phone: 0871-6660073

Research

Title
Zircon U-Pb ages, geochemistry, and Sr-Nd isotope ratios for early cretaceous magmatic rocks, southern Saqqez, northwestern Iran
Type
JournalPaper
Keywords
Neotethys subduction; Sanandaj-sirjan zone; Granitoid; Active continental margin; Magma mixing; Cretaceous volcanism
Year
2021
Journal Chemie der Erde-Geochemistry
DOI
Researchers Somayeh Gholipour ، Hossein Azizi ، Faribourz Masoudi ، YoshiHero Asaha ، Motohiro TSUBOI

Abstract

Sanandaj-Sirjan Zone (SaSZ) is one of the most dynamic structural zones of Iran, which is divided into three main parts: Northern, Central and Southern. The northern SaSZ has been affected by deformation due to fault activities near the Zagros suture zone, and mylonitic structures have overprinted these rocks and was affected by three episodes of magma injection during the Permian-Carboniferous, Early Cretaceous and Cenozoic. In this study, the rock units investigated that have been considered Precambrian-Paleozoic basement on geological maps. This paper considers zircon U-Pb dating, whole-rock chemistry and Sr-Nd isotope ratios of Cretaceous magmatic rocks in the N-SaSZ to develop a new geodynamic model for the evolution of these magmatic rocks. The new zircon U-Pb ages obtained in this study show that the magmatic rocks crystallized at 115–107 Ma in the Early Cretaceous (Aptian-Albian) and are much younger than the supposed ages presented on geological maps. This complex classified into two main groups of basic-intermediate and acidic rocks based on SiO2 contents. The whole-rock chemistry of the basaltic and andesitic rocks, which are interbedded with marine shallow-water sedimentary deposits, shows their typical calc-alkaline affinity and subordinate tholeiitic series on an active margin. The positive εNd(t) of approximately +4 for some undifferentiated basalts with negative Ti and Nb anomalies shows the relation of these rocks to calc-alkaline magmatism and was generated by the partial melting of subcontinental lithospheric mantle (SCLM). Granitoid rocks with some affinity to the peraluminous group with a negative εNd(t) value (-3.2) mainly and negative Ti and Nb anomalies plot in an active margin tectonic setting. Simultaneous mafic calc-alkaline volcanism and the generation of granitic intrusions in the Early Cretaceous could have occurred on an active margin. Due to the absence of Jurassic arc related magmatic rocks in northern SaSZ and presence of Cretaceous calc alkaline magmatic activity, which are not observed in the central SaSZ, support the idea that the subduction of the Neotethys beneath the northern SaSZ started in the Early Cretaceous.