Background: Silver has been recognized as a toxic element for biological systems. A low level of exposure to silver compounds is widespread owing to the use of soluble silver compounds to disinfect water for drinking and reaction purposes. The present paper describes an ultrasound-assisted emulsification microextraction method for the preconcentration and determination of silver ions in drinking water. Methods: Determination was carried out using 1,4,8,11-tetraazacyclotetradecane as a complexing reagent and chloroform as extracting solvent, followed by flame atomic absorption determination of silver ions. Results: The main factors affecting microextraction efficiency, such as extraction solvent type and volume, concentration of chelating reagent, concentration of picrate ions, and pH, were optimized. Under optimal conditions, a limit of detection and enrichment factor of 6.79 ng mL−1 and 9.8 were obtained for silver ions, respectively. The analytical curve was linear in the range of 0.055–1.5 μg mL−1, with a correlation coefficient (R2) of 0.997. Conclusions: The use of ultrasound as a powerful energy for the microextraction and determination of silver was proposed. The main advantages of the method are as follows: minimum use of toxic organic solvent and wide linear dynamic range.