The Kuh-e Dom Pluton is located along the central northeastern margin of the Urumieh–Dokhtar Magmatic Arc, spanning a wide range of compositions from felsic rocks, including granite, granodiorite, and quartz monzonite, through to intermediate–mafic rocks comprising monzonite, monzodiorite, diorite, monzogabbro, and gabbro. The Urumieh–Dokhtar Magmatic Arc forms a distinct linear magmatic complex that is aligned parallel with the orogenic suture of the Zagros fold-thrust belt. Most samples display characteristics of metaluminous, high-K calc-alkaline, I-type granitoids. The initial isotopic signatures range from εNd (47 Ma) = −4.77 to −5.89 and 87Sr/86Sr(i) = 0.7069 to 0.7074 for felsic rocks and εNd (47 Ma) = −3.04 to −4.06 and 87Sr/86Sr(i) = 0.7063 to 0.7067 for intermediate to mafic rocks. This geochemical and isotopic evidence support a mixed origin for the Kuh-e Dom hybrid granitoid with a range of contributions of both the crust and mantle, most probably by the interaction between lower crust- and mantle-derived magmas. It is seem, the felsic rocks incorporate about 56–74% lower crust-derived magma and about 26–44% of the enriched mantle-derived mafic magma. In contrast, 66–84% of the enriched mantle-derived mafic magma incorporates 16–34% of lower crust-derived magma to generate the intermediate–mafic rocks. According to the differences in chemical composition, the felsic rocks contain a higher proportion of crustal material than the intermediate to mafic ones. Enrichment in LILEs and depletion in HFSEs with marked negative Nb, Ba, and Ti anomalies are consistent with subduction-related magmatism in an active continental margin arc environment. This suggestion is consistent with the interpretation of the Urumieh–Dokhtar magmatic arc as an active continental margin during subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent.