2024 : 11 : 23
Fereidoun H. Panahi

Fereidoun H. Panahi

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId: 123452
HIndex:
Faculty: Faculty of Engineering
Address:
Phone:

Research

Title
A Low-Complexity High-Accuracy AR Based Channel Prediction Method for Interference Alignment
Type
Presentation
Keywords
Interference Alignment, Channel State Information, Channel Prediction
Year
2018
Researchers Masayoshi Ozawa ، Tomoaki Ohtsuki ، Fereidoun H. Panahi ، Wenjie Jiang ، Yasushi Takatori ، Tadao Nakagawa

Abstract

Interference alignment (IA) is a technique that can suppress interference with a small number of antennas by aligning interference signals using transmit weights. These weights are designed based on the channel state information (CSI) fed back from each receiver, however, under the timevarying channel, the estimated CSI can be delayed/outdated, which will result in an imperfect IA. Therefore, IA with channel prediction has attracted much attention. The auto regressive (AR) model is known as a prediction method that predicts a future state based on only the past states. In the conventional channel prediction based IA method, the past channels are used directly for prediction. Therefore, the number of calculations for prediction can be too large. In this paper, based on the AR model, we describe a low complexity and high accuracy channel prediction method for IA. To predict the future channel, we only use the differences of channels between adjacent times instead of using the past channels directly. This will lead to a very low channel prediction error. Simulations show that the proposed method improves prediction accuracy and requires less calculation than the conventional one. Moreover, the IA with the proposed channel prediction method will achieve a higher transmission rate.